Year 1 Chemistry

Summer Holiday work

Bridging the gap between GCSE and A-Level

Name: \qquad

You should complete this work ready for starting Year 1 ALevel Chemistry. If there are any questions that you cannot do, even after using your GCSE notes and revision guide, then you must speak to your new Chemistry tutor and arrange support for these topics.

The following topics you should have studied at GCSE will be used and extended during the first year of A Level:

- Structure of the atom
- Ionic and covalent bonding and structure
- Alkanes and alkenes
- Rates of Reaction
- Chemical formula
- Balancing equations
- Empirical formula
- Reactivity trends in Group 2 and Group 7
- Exothermic and endothermic reactions

Use your GCSE notes and your revision guide (if you have one) to write down some key points under each heading in your Chemistry note book or your lovely new Chemistry folder. You can then have a go at the following questions for each section.

Completing this work will ensure you are prepared and ready to start Chemistry.

Structure of the Atom

Q1 Complete the table:

Particle	Relative Mass	Relative Charge
Proton	1	
Neutron		
Electron	$1 / 2000$	

Q2 What is the charge on an ion formed when an atom loses two electrons?

Q3 What is the charge on an ion formed when an atom gains two electrons?

Q4 Draw diagrams to show the electron arrangements in:
Carbon
Fluorine

Q5 Draw diagrams to show the electron arrangements in:
Magnesium Sulfur

Q6 Use the format 2,8,8,2 to write the electron arrangements for
Lithium
Sodium
Potassium
Beryllium \qquad
Magnesium
Calcium \qquad

Ionic and covalent Bonding

Q7 Draw diagrams to show clearly how a magnesium atom reacts with an oxygen atom to form magnesium oxide

Q8 Draw diagrams to show clearly the bonding in calcium chloride $\left(\mathrm{CaCl}_{2}\right)$

COHLLEGG

Q9 Draw "dot and cross" diagrams to show the covalent bonding in the following molecules:

Hydrogen $\left(\mathrm{H}_{2}\right)$ Chlorine (Cl_{2})

Ammonia $\left(\mathrm{NH}_{3}\right)$
Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$

Oxygen $\left(\mathrm{O}_{2}\right)$

Alkanes and Alkenes

Q10	Draw the structures of: $\mathrm{C}_{5} \mathrm{H}_{12}$	$\mathrm{C}_{6} \mathrm{H}_{14}$
Name	...	Name ...

Q11 Complete the general formula of the alkanes

$\mathrm{C}_{\mathrm{n}} \mathrm{H}$

Q12 Complete the general formula of the alkenes

Rates of Reaction

Q13 Write down as many ways as you can think of to speed up the rate of a chemical reaction

Chemical Formula

Aluminium Al^{3+}	Bromide Br	Calcium Ca^{2+}	Carbonate $\mathrm{CO}_{3}{ }^{2-}$
Chloride Cl^{-}	Iron(II) Fe^{2+}	Iron(III) Fe^{3+}	Nitrate NO_{3}^{-}
Oxide O^{2-}	Potassium K^{+}	Sodium Na^{+}	Sulfate $\mathrm{SO}_{4}{ }^{2-}$

Q14 Use the table of ions to deduce the formulae of the following ionic compounds Sodium chloride Calcium bromide

Sodium carbonate
Aluminium oxide

Iron(II) chloride
Potassium oxide

Aluminium chloride
Potassium nitrate

Aluminium sulfate
iron(III) nitrate

JoHn LeGGo

Balancing Equations

Q15 Write a balanced symbol equation for the combustion of methane in oxygen Methane + oxygen \rightarrow carbon dioxide and water

Q16 Balance the following symbol equations
$\mathrm{K}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2}$
$\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{2} \mathrm{O}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$

Empirical formula

Q17 Calculate the molecular formula of a compound containing 52.2\% carbon, 13.0\% hydrogen and 34.8% oxygen if the relative formula mass of the compound in 46 (Relative atomic mass values: $\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16$)

Reactivity trends in Group 2 and Group 7

Q18 The following are descriptions of the reactions of Be and Ca with cold water. Use them to predict the reactions of Mg and Sr

Beryllium will not react with cold water at all. Calcium reacts slowly with cold water to produce hydrogen gas and calcium hydroxide.

Reaction of magnesium

Reaction of strontium

Q19 Explain if a reaction would occur if you mixed the following halogens and halide solutions. (If there is no reaction, write "no reaction", if a reaction occurs explain why)

Chlorine and bromide

Bromide and iodide

Iodine and chloride

Iodine and bromide

Chlorine and iodide

Exothermic and endothermic reactions

Q20 Label these enthalpy profile diagrams correctly as exothermic or endothermic.

Maths Skills

Algebra is probably the most important maths skill you will need for A-level Chemistry. You need to be fast and accurate at rearranging equations
$A=B C$
Rearrange the equation and make B the subject of the expression

Rearrange the equation and make C the subject of the expression
$A B=C D E$
Rearrange the equation and make A the subject of the expression

Rearrange the equation and make C the subject of the expression
$A=B-C D$
Rearrange the equation and make D the subject of the expression

$A=B \times C^{2}$

Rearrange the equation and make C the subject of the expression
$A=-B C / n D$
Rearrange the equation and make $/ n D$ the subject of the expression

Then make D the subject of the expression

