SUMMER TASK FOR STUDENTS STARTING SEPTEMBER 2024

We look forward to seeing you in our Science Department this September!

PLEASE COMPLETE THE FOLLOWING TASKS:

A Level Physics Bridging Task

Answer the questions below on spare paper or in a booklet. Keep it safe, we will go through answers in the first week of lessons. Take a photo of your work in case you lose it or it gets damaged.

4762 is a four digit number, if we rounded this to 3 significant figures (s.f.) it would be 4760. To 2 s.f. it would be 4800. Round the following numbers:

5621 to 3s.f.
7180 to 2 s.f.
90911 to 3s.f.
18.23 to 3s.f.
0.00146 to 2 s.f.

The SI unit of length is the metre, scientists measure lengths in metres rather than feet or miles or any other unit. State the SI unit of the following:
Time
Energy
Speed
Electric current
Density

State a quantity which has the following as its SI unit, there may be more than one answer possible but only one answer is needed:
Newtons
Joules per second
Volts
Hertz

Kelvin

One of the most famous equations in GCSE and A Level Physics is $F=$ ma, resultant force equals mass times acceleration. If a mass of 2.3 kg has an acceleration of $6.2 \mathrm{~ms}^{-2}$, the resultant force is $F=2.3 \times 6.2=14.26 \mathrm{~N}$. For each of the following, calculate the resultant force:
A mass of 1.7 kg is accelerated at $3.4 \mathrm{~ms}^{-2}$.
A mass of 77.1 kg is accelerated by $1.41 \mathrm{~ms}^{-2}$.
A mass of 5600 kg is accelerated by $0.082 \mathrm{~ms}^{-2}$.

In the example in question 4 , the numbers put into the calculation (2.3 and 6.2) are both to 2 s.f., so we will round the answer to 2 s.f. as well, so 14.26 N becomes 14 N . This is an appropriate number of significant figures. Round each of your answers to question 4 to an appropriate number of significant figures.

Rearrange $F=m a$ so that m is the subject of the equation. It may help to visit https://www.youtube.com/watch?v=wA112YyHIOQ .

If a mass of 3 kg has a resultant force of 19.5 N on if, I can find the acceleration using $\mathrm{a}=$ $\mathrm{F} / \mathrm{m}, \mathrm{a}=19.5 / 3=6.5 \mathrm{~ms}-2$. Find the acceleration in the following scenarios:

A 4 kg mass is accelerated by a 28 N force.
An 80 kg person is accelerated by a 200 N force.
A resultant force of 65.52 N accelerates a mass of 9.1 kg .
8. Momentum is calculated by doing mass multiplied by velocity, $p=m v$, where p is used for momentum because m is already used for mass. Calculate the following:
The momentum of a 0.3 kg ball travelling at $4.2 \mathrm{~ms}^{-1}$.
The velocity of a car of mass 1200 kg with a momentum of $36000 \mathrm{kgms}^{-1}$.
9. Quantities in physics are either scalars or vectors. Scalars do not have a direction, an example is energy; vectors do have a direction, forces are vectors as they push or pull objects in certain directions. For each of the following, state whether it is a scalar or a vector:

Distance
Displacement
Speed
Velocity
Momentum
Density
10. For each of your answers to Q3, state if they are scalars or vectors.

Challenge: An athletics track is a loop which is 400 m in length. I propose that a 200 m runner goes further than a 100 m runner, a 400 m runner and an 800 m runner. Explain why I am right.

It may help to draw it out and consider the finish point for each of them if they have the same start point.

Extension Course - This course covers a lot of the material that will be covered in Unit 1 of A Level Physics. If you can complete the course, or some of it, it will give you a good head start in this.

Introduction to Mechanics

Introduction to Engineering Mechanics Course by Georgia Institute of Technology | Coursera © www.coursera.org

